Plasmodium falciparum: Rosettes do not protect merozoites from invasion-inhibitory antibodies.
نویسندگان
چکیده
Rosetting is a parasite adhesion phenotype associated with severe malaria in African children. Why parasites form rosettes is unknown, although enhanced invasion or immune evasion have been suggested as possible functions. Previous work showed that rosetting does not enhance parasite invasion under standard in vitro conditions. We hypothesised that rosetting might promote invasion in the presence of host invasion-inhibitory antibodies, by allowing merozoites direct entry into the erythrocytes in the rosette and so minimising exposure to plasma antibodies. We therefore investigated whether rosetting influences invasion in the presence of invasion-inhibitory antibodies to MSP-1. We found no difference in invasion rates between isogenic rosetting and non-rosetting lines from two parasite strains, R29 and TM284, in the presence of MSP-1 antibodies (P = 0.62 and P = 0.63, Student's t test, TM284 and R29, respectively). These results do not support the hypothesis that rosettes protect merozoites from inhibitory antibodies during invasion. The biological function of rosetting remains unknown.
منابع مشابه
A New Rodent Model to Assess Blood Stage Immunity to the Plasmodium falciparum Antigen Merozoite Surface Protein 119 Reveals a Protective Role for Invasion Inhibitory Antibodies
Antibodies capable of inhibiting the invasion of Plasmodium merozoites into erythrocytes are present in individuals that are clinically immune to the malaria parasite. Those targeting the 19-kD COOH-terminal domain of the major merozoite surface protein (MSP)-119 are a major component of this inhibitory activity. However, it has been difficult to assess the overall relevance of such antibodies ...
متن کاملStructural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA
Plasmodium falciparum causes malaria in humans with over 450,000 deaths annually. The asexual blood stage involves invasion of erythrocytes by merozoites, in which they grow and divide to release daughter merozoites, which in turn invade new erythrocytes perpetuating the cycle responsible for malaria. A key step in merozoite invasion is the essential binding of PfRh5/CyRPA/PfRipr complex to bas...
متن کاملThe most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody.
Apical membrane antigen 1 (AMA1) is currently one of the leading malarial vaccine candidates. Anti-AMA1 antibodies can inhibit the invasion of erythrocytes by Plasmodium merozoites and prevent the multiplication of blood-stage parasites. Here we describe an anti-AMA1 monoclonal antibody (MAb 1F9) that inhibits the invasion of Plasmodium falciparum parasites in vitro. We show that both reactivit...
متن کاملMode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum.
Antibodies against apical membrane antigen 1 (AMA-1) of Plasmodium falciparum inhibit merozoite invasion into erythrocytes. Invasion-inhibitory polyclonal AMA-1 antibodies inhibit secondary proteolytic processing and surface redistribution of AMA-1 on merozoites. We present evidence supporting inhibition of processing and redistribution as probable causes of inhibition of invasion by polyclonal...
متن کاملA novel Plasmodium falciparum rhoptry associated adhesin mediates erythrocyte invasion through the sialic-acid dependent pathway
Erythrocyte invasion by Plasmodium falciparum merozoites is central to blood-stage infection and malaria pathogenesis. This intricate process is coordinated by multiple parasite adhesins that bind erythrocyte receptors and mediate invasion through several alternate pathways. P. falciparum expresses 2700 genes during the blood-stages, of which the identity and function of many remains unknown. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental parasitology
دوره 112 4 شماره
صفحات -
تاریخ انتشار 2006